Hyperbaric Oxygen Therapy
Wound Healing
Wounds require oxygen to heal properly.
Hyperbaric Oxygen Therapy reduces swelling, promotes tissue regeneration, and assists with the formation of new blood vessels. The high pressure of the chamber increases the amount of oxygen in the blood, providing a superior environment for quicker wound healing.
Studies on Chronic, Non-healing Wounds and HBOT
Hyperbaric oxygen therapy for nonhealing wounds: Treatment results of a single center
Teguh DN, Bol Raap R, Koole A, Knippenberg B, Smit C, Oomen J, van Hulst RA. Hyperbaric oxygen therapy for nonhealing wounds: Treatment results of a single center. Wound Repair Regen. 2021 Mar;29(2):254-260. doi: 10.1111/wrr.12884. Epub 2020 Dec 30. PMID: 33377598; PMCID: PMC7986203.
Abstract
The present article evaluates the results of the treatment with adjuvant hyperbaric oxygen therapy (HBOT) of patients with nonhealing, chronic wounds. In the period 2013 to 2016, 248 patients were referred from various hospitals because of chronic wounds that were recalcitrant in healing despite standard wound care as described in national and international guidelines. After inclusion, all patients were treated with HBOT and subjected to a weekly standard wound care treatment. During each HBOT session, 100% O2 was administered for 75 minutes under increased pressure of 2.4 ATA. Wounds and quality of life were assessed before and after the total treatment period. A total of 248 patients have been evaluated. Diabetic foot ulcers were present in 134 patients, the remainder (114 patients) showed a variety of wound locations and etiologies. The number of HBOT treatments amounted to an average of 48 (range 20‐68) sessions. Before referral to our clinic, 31% of all wounds had existed for at least 18 months (72 patients). After HBOT, 81% of all wounds were near complete healing or completely healed, in 13% of the cases the wound was stable, and in 2% minor or major amputation had to be carried out. The mean treatment time for wounds pre‐existing fewer than 6 weeks (“early referrals”) was 67 days, and 119 days for wounds pre‐existing more than 18 months (“late referrals”). A majority of the patients in our study referred with nonhealing wounds clinically improved when adjuvant HBOT was added to standard wound care protocols. No differences in success rate were seen between diabetic and nondiabetic wounds. It showed that HBOT is a well‐tolerated treatment.
Qixu Zhang, Lisa J. Gould,
Hyperbaric Oxygen Reduces Matrix Metalloproteinases in Ischemic Wounds through a Redox-Dependent Mechanism, Journal of Investigative Dermatology, Volume 134, Issue 1, 2014, Pages 237-246, ISSN 0022-202X, https://doi.org/10.1038/jid.2013.301.
(https://www.sciencedirect.com/science/article/pii/S0022202X15364782)
Efficacy of hyperbaric oxygen therapy for diabetic foot ulcers: An updated systematic review and meta-analysis
Sharma, R., Sharma, S.K., Mudgal, S.K. et al. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials. Sci Rep 11, 2189 (2021). https://doi.org/10.1038/s41598-021-81886-1
Abstract
Studies have suggested that hyperbaric oxygen therapy (HBOT) is effective in the healing of diabetic foot ulcer (DFU); however, there is a lack of consensus. Therefore, to assess the efficacy of HBOT on diabetic foot ulcer among diabetic patients, controlled clinical trials were searched through PubMed, EMBASE, Clinical key, Ovid Discovery, ERMED, Clinical Trials.gov databases for randomized controlled trials (RCTs) and other sources until 15 September 2020. Studies that evaluated the effect of HBOT on diabetic foot ulcer, complete healing, amputation, adverse events, ulcer reduction area, and mortality rate were included. Of 1984 study records screened, 14 studies (768 participants) including twelve RCTs, and two CCTs were included as per inclusion criteria. The results with pooled analysis have shown that HBOT was significantly effective in complete healing of diabetic foot ulcer (OR = 0.29; 95% CI 0.14–0.61; I2 = 62%) and reduction of major amputation (RR = 0.60; 95% CI 0.39–0.92; I2 = 24%). Although, it was not effective for minor amputations (RR = 0.82; 95% CI 0.34–1.97; I2 = 79%); however, less adverse events were reported in standard treatment group (RR = 1.68; 95% CI 1.07–2.65; I2 = 0%). Nevertheless, reduction in mean percentage of ulcer area and mortality rate did not differ in HBOT and control groups. This review provides an evidence that hyperbaric oxygen therapy is effective as an adjunct treatment measure for the diabetes foot ulcers. These findings could be generalized cautiously by considering methodological flaws within all studies.