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MOGHADAM, N., M. HIEDA, L. RAMEY, B. D. LEVINE, and R. GUILLIOD. Hyperbaric Oxygen Therapy in Sports Musculoskeletal

Injuries. Med. Sci. Sports Exerc., Vol. 52, No. 6, pp. 1420–1426, 2020. Hyperbaric oxygen therapy (HBOT) is a well-established treatment for

a variety of conditions. Hyperbaric oxygen therapy is the administration of 100% oxygen breathing in a pressure vessel at higher than atmo-

spheric pressure (1 atmosphere absolute = 101 kPa). Typically, treatment is given daily for between 1 and 2 h at pressures of 2.0 to 2.8 ATA,

depending on the indication. Sporting injuries are often treated over 3 to 10 sessions. Hyperbaric oxygen therapy has been documented to be effective

and is approved in 14medical indications by theUndersea andHyperbaricMedical Society, including, but not limited to, carbonmonoxide poisoning,

compromised skin grafts and flaps, crush injuries, necrotizing soft tissue infections, and nonhealing ulcers with arterial insufficiencies. Recently,

HBOT for sports musculoskeletal injuries is receiving increased attention. Hyperbaric oxygen therapymay allow injured athletes to recover faster than

normal rehabilitation methods. Any reduction in collegiate and professional athletes’ rehabilitation period can be financially significant for top-level

sports teams; however, further research is required to confirm HBOT’s benefits on sports musculoskeletal injuries. The purpose of this review to dis-

cuss the current understanding of HBOT as a treatmentmodality for commonmusculoskeletal injuries in sport medicine.Moreover, wewill highlight

the advantages and disadvantages of this modality, as well as relevant clinical and research applications. Key Words: HYPERBARIC OXYGEN

THERAPY, SPORTS MUSCULOSKELETAL INJURIES, THERAPY, REHABILITATION
INDICATIONS AND GENERAL PROTOCOLS OF
HYPERBARIC OXYGEN THERAPY

Hyperbaric oxygen therapy (HBOT) refers to the administra-
tion of pure oxygen intermittently at a pressure higher than 1
atmosphere absolute (ATA) in a hyperbaric chamber. For clin-
ical purposes, the Undersea and Hyperbaric Medical Society
(UHMS) indicates that pressurization should be 1.4 ATA
(141.86 kPa) or higher to be effective. The common range of
pressure used is between 2 and 2.8 ATA. (1) Typically, each
session takes between 60 and 120 min. Treatment can be car-
ried out in either a monoplace or multiplace chamber. The for-
mer accommodates a single patient where the entire chamber
is usually pressurized with 100% oxygen, and the patient
breathes the ambient chamber oxygen directly. The latter
holds two or more people (patients, observers, and/or support
personnel), and the chamber is pressurized with compressed
air while the patients breathe near 100% oxygen via masks,
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head hoods, or endotracheal tubes. (1–3) Hyperbaric oxygen
therapy has been used in a wide variety of medical settings.
(4) In the United States, the Food and DrugAdministration de-
fers to the UHMS to establish the list of indications for which
HBOT has sufficient evidence to support its use. Currently, 14
medical indications have been approved However in other coun-
tries a larger number of indications are recognized (Table 1) (1).
The European Committee for Hyperbaric Medicine has ac-
cepted 30 indications for HBOT. These indications are divided
in three categories, European Committee for Hyperbaric Medi-
cine type 1 to 3: type 1, where HBOT is strongly indicated as a
primary treatment method and its use is supported by suffi-
ciently strong evidence. Type 2, where HBOT is suggested and
its use is supported by acceptable levels of evidence. Type 3,
where HBOT can be considered as a possible/optional mea-
sure, but it is not yet supported by sufficiently strong evidence
(5) The branch of Hyperbaric Oxygen Medicine of the Chinese
Medical Association endorses 12 emergency indications and 48
nonemergency indications (6).
POTENTIAL MECHANISMS AND PHYSIOLOGICAL
EFFECTS OF HBOT

Hyperbaric oxygen therapy in the short-term enhances oxy-
gen delivery with vasoconstriction, which reduces edema, im-
proves neutrophil phagocytic function that mitigates infection,
has anti-inflammatory effects, and mitigates ischemia–reperfusion
injury. Over longer periods and with repeat administration, HBOT
. Unauthorized reproduction of this article is prohibited.
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TABLE 1. Therapeutic uses of hyperbaric oxygen according to UHMS.

1. Air or gas embolism
2. Carbon monoxide poisoning/carbon monoxide poisoning complicated by cyanide

poisoning
3. Clostridial myositis and myonecrosis (gas gangrene)
4. Crush injuries, compartment syndrome and other traumatic ischemias
5. Decompression sickness
6. Arterial Insufficiencies

(a) Central retinal artery occlusions
(b) Selected problem wounds—diabetic ulcers (microvascular insufficiency)

7. Severe anemia
8. Intracranial abscesses
9. Necrotizing infections
10. Osteomyelitis (refractory)
11. Delayed radiation injury (soft tissue and bony necrosis)
12. Compromised grafts and flaps
13. Acute thermal burn injury
14. Idiopathic sudden sensorineural hearing loss

The UHMS approves use of hyperbaric oxygen for a few conditions for which there is
thought to be reasonable scientific evidence or well validated clinical experience (1).

A
PPLIED

SC
IEN

C
ES

D
ow

nloaded from
 http://journals.lw

w
.com

/acsm
-m

sse by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 01/10/2024
induces neovascularization and neoangiogenesis as well as
stimulation of collagen production by fibroblasts. (7) All of
these effects could enhance the rehabilitation of an injured mus-
cle in the inflammatory and proliferative phases of recovery.

The plasma oxygen concentration is normally approxi-
mately 3 mL·L−1 at sea level (8). Despite the varying need
for oxygenation between different tissues, typical resting tissues
need about 60 mL of oxygen·L−1 to maintain normal metabo-
lism; dissolved oxygen levels can reach this level (60 mL·L−1

plasma), without considering hemoglobin bound oxygen at a
pressure of 3 ATA (304 kPa) (4). During carbon monoxide
poisoning or in severe anemia without the possibility of
transfusion, this mechanism can help deliver oxygen without
the need for transfer via hemoglobin. Delivering oxygen at
300 kPa leads to achieving 270 kPa (2025 mmHg) of oxygen
in the arterial blood and roughly 53 kPa (~400 mmHg) in the
tissues (4,9).

The most important effect of HBOT, beyond offering more
O2 to the tissues, is producing free radicals in a therapeutic
range for cell signaling. Hyperbaric oxygen therapy induces
oxidative stress by mean of controlled production of reactive
oxygen and nitrogen species, which causes the activation of
cellular processes and pathways (7,10–12). Some of the most
relevant mechanisms are as follows: increased growth factors
(e.g., hypoxia-inducible factor 1-α) (13), vascular endothelial
growth factor (14,15), stromal-derived factor 1 (13), mobiliza-
tion of bonemarrow-derived stem cells (CD34) (7), and the re-
duction of neutrophil adhesion (modification of integrin β-2)
that mitigates ischemia-reperfusion injury (7,16).

ADVERSE EFFECTS OF HBOT

Hyperbaric oxygen therapy is mostly safe, and the adverse
effects are mainly mild and reversible. There are two main
concerns using HBOT, (A) barotrauma (trauma caused by pres-
sure) and (B) oxygen toxicity (17).

Barotrauma is caused by an inability to balance pressure be-
tween the pressurized environment and any gas-filled space in
the body. The middle ear is the most commonly affected place
of barotrauma, which starts with tympanic membrane hyperemia
HYPERBARIC OXYGEN THERAPY IN SPORTS INJURIES
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and can lead to a tympanic membrane rupture. Air trapping in si-
nuses due to obstruction by a polyp or inflammation can also lead
to increased susceptibility to barotrauma. Any air pocket in teeth
due to dental decay can lead to a large amount of pain. An impor-
tant but rare consideration is barotrauma to the lungs during de-
pressurization at the end of the HBOT. This represents a risk if
the patient holds the breath or has a lung condition with air trap-
ping in the airways, which can lead to pneumomediastinum,
pneumothorax, or gas embolism.

Oxygen toxicity is a condition resulting from the harmful
effects of breathing oxygen at increased partial pressures
(18,19). As noted above, at least some of the beneficial effects
of HBOT may be through controlled oxidative stress. Antiox-
idant defenses are generally adequate during the hyperoxic ex-
posure created by typical clinical HBOT. Nonetheless, there
may be negative aspects to high levels of oxygen radicals
and oxygen toxicity in the central nervous system (CNS) can
occur (17). The CNS oxygen toxicity manifests as symptoms
such as visual changes, ringing in the ears, nausea, twitching,
anxiety, confusion, and dizziness. The CNS oxygen toxicity
during clinical hyperbaric oxygen treatment is an oxygen toxicity
seizure (17). Pulmonary oxygen toxicity (POT) is caused by ex-
posure of the lungs to oxygen. Although described after pro-
longed normobaric exposures to concentrations above 50%, the
development of POTmanifestations is muchmore rapid with hy-
perbaric exposure. Pulmonary oxygen toxicity is characterized
by acute exudative manifestations including edema, hemorrhage
and cell destruction, and subacute proliferative manifestations
including fibrosis and hyperplasia. Clinically important POT
is highly unusual in association with routine doses of HBOT,
but can occur with prolonged exposures (17).

HBOTFORSPORTSMUSCULOSKELETAL INJURIES

Hyperbaric oxygen therapy has become popular among
injured athletes because of its hypothetical benefits on acceler-
ated recovery, especially among professional athletes or those
with substantial financial resources. However, despite the wide-
spread popular appeal, the evidence supporting this practice is
meager. Previous reviews have investigated the possible role
of HBOT in specific injuries or sports injuries in general
(2,3,20–22), but there has not been any new review since 2005.

MUSCLE INJURY AND HBOT

Muscle injuries encompass a broad range of pathologies,
including muscle cramps, delayed-onset muscle soreness
(DOMS), muscle contusion and muscle tears (23). Muscle
tears (often referred to as muscle strains) are one of the most
common musculoskeletal injuries and can account for prolonged
time missed from sport. In a recent study of injuries among na-
tional collegiate athletes from 2009 to 2015, muscle strains were
found to be the second most common diagnosis that resulted in
missed participation for more than 21 d (24). Although histori-
cally classified into three grades based on severity of symptoms
and degree of tear, ranging from small partial tear to complete
rupture, a number of new classification systems have been
Medicine & Science in Sports & Exercise® 1421
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 on 01/10/2024
proposed. Currently, there is little consensus on a comprehensive
and evidenced based system to classify muscle injuries (25).
Delayed-onset muscle soreness is characterized by discomfort
in skeletal muscles after more than usual intensity exercise; it
peaks in 24 to 48 h after the exercise and is typically resolved
in 5 to 7 d. This muscle damage can lead to a transient decline
in physical performance (26) and/or increased risk of injury
(27). The ability for sports physicians to reduce the recovery pe-
riod after muscle injuries is extremely significant, especially in
the realm of financial incentives in professional sports where
TABLE 2. Summary of human clinical trials for HBOT in sports related injuries.

Reference Injury Type Groups

Soolsma, 1996 (54) Grade II MCL injury HBOT group
n = 7

Control Group
n = 7

Borromeo et al., 1997 (31) Ankle sprain within 72 h HBOT group
n = 16

control group
n = 16

Staples et al., 1999 (32) Induced DOMS of quadriceps
HBO group

n = 9
Delayed HBO group

n = 9
Sham group

n = 9
Control group

n = 9

3 d HBO group
n = 10
5 d

HBO group
n = 10

Sham group
n = 10

Mekjavic et al., 2000 (33) Induced DOMS of elbow flexors HBOT groups
n = 12

Control groups
n = 12

Harrison et al., 2001 (34) Exercise-induced muscle injury
with Preacher Curl

Immediate HBOT
n = 6

Delayed HBOT
n = 7

Control group
n = 7

Webster et al., 2002 (35) Exercise-induced muscle injury
in gastrocnemius

HBOT group
n = 6

Control group
n = 6

Babul et al., 2003 (36) Induced DOMS of knee flexors HBOT group
n = 8

control group
n = 8

Germain et al., 2003 (37) Induced DOMS of quadriceps femoris HBOT group
n = 8

Control group
n = 8

*Statistically significant (P < 0.05) difference between HBOT and control group in that outcome.
↑Outcome variable is higher in HBOT group in compare to control group.
↓Outcome variable is lower in HBOT group in compare to control group.
↔The outcome variable is similar in HBOT and control group.

1422 Official Journal of the American College of Sports Medicine
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slightly faster return to play is of most importance in the light
of economy of professional sports. The team has to continue pay-
ing the salary of injured athlete despite the fact that he or she is
not playing; as an example, the cost of salaries for injured players
on the disabled list of Major League Baseball was over US $1.6
billion in 2013 to 2015 (28). This demand for faster return to ser-
vice is also the case in military settings (29).

Few clinical studies have suggested an advantage of
HBOT for sports injuries over routine care, especially DOMS
(see Table 2).
Intervention
Summary of Results (Effect of HBOT

in Compare to the Control)

10 sessions of 2.5 ATA 100% O2 ↓volume of edema
↓muscle wasting
↑range of motion
↑Maximum flexion
↔ Severity of pain
↔ One legged jump test

10 sessions of 1.2 ATA air

3 sessions 2 ATA 100% O2 ↑functional index improvement*
↔ reduced swelling
↔ pain
↔ range of motion
↔ time to recovery

3 sessions 1.1 ATA air

Phase 1 Phase 1
↔ Pain score
↑Recovery of torque (HBO vs

Delayed HBO, Sham, and control)*
Phase 2
↔ Pain score
↑Mean eccentric quadriceps torque

(5 d HBO vs Sham and 3 d HBO)*

3 sessions 2.5 ATA 100% O2 and
2 sessions 1.2 ATA 21% O2 after that

2 sessions 1.2 ATA 21% O2 and
3 sessions 2.5 ATA 100% O2 after that

5 sessions 1.2 ATA 21% O2

No treatment

Phase 2
3 sessions 2.5 ATA 100% O2

5 sessions 2.5 ATA 100% O2

5 sessions 1.2 ATA 21% O2

7 sessions 2.5 ATA 100% O2
(PIO2 = 2.5 ATA)

↔ the rate of recovery
↔ muscle strength
↔ peaked Perceived soreness
↔ increases in arm circumference

7 sessions 2.5 ATA normoxic
(PIO2 = 0.2 ATA)

5 sessions 2.5 ATA 100% O2 (starting day 0) ↔ cross-sectional area
↔ T2 relaxation time in MRI
↔ isometric strength serum CK level
↔ perceived soreness

4 sessions 2.5 ATA 100% O2 (starting day 1)

No treatment

3 sessions of 2.5 ATA 100% O2 ↑isometric peak torque recovery*
↓pain perception*
↔ isokinetic peak torque
↔ muscular endurance
↔ T2 relaxation time in MRI
↔ cross-sectional area

3 sessions of 1.3 ATA air

5 sessions of 2.0 ATA 100% O2 ↔ Pain
↔ Strength
↔ quadriceps circumference
↔ creatine kinase
↔ malondialdehyde
↔ MRI images (T2 and STIR)

5 sessions of 1.2 ATA air

5 sessions of 2.5 ATA 95% O2 ↔ creatine kinase
↔ muscle soreness
↔ leg circumference
↔ isokinetic peak torque

No treatment

http://www.acsm-msse.org
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Potential Mechanism of HBOT for Muscle Injury in
Acute and Proliferative Phases

Acute phase. Inflammation after muscle injury includes
the production and release of inflammatory cytokines, in-
creased vascular permeability, migration of neutrophils, and
edema (38). Edema increases the diffusion distance for oxygen
while at the same time, increases in extracellular pressure can
reduce perfusion, a combination that can result in significant
hypoxia and necrosis (39). Delivering oxygen by HBOTwith-
out an increase in vascular dilation and permeability can hypo-
thetically simultaneously reduce edema and hypoxia. Under
the effect of HBOT, the transition from an inflammatory state
to a proliferative state is accelerated. This accelerated transi-
tion has been evidenced through the increase in the number
of anti-inflammatory M2 macrophages (M2) in comparison
to pro-inflammatory M1 macrophages (M1) in the study of
Oyaizu et al (40). It has been shown that HBOT accelerates
the differentiation of migrated M1macrophages to M2macro-
phages in the initial phase of healing period (40,41).

Proliferative phase. Satellite cells play a vital role in the
proliferative phase of muscle rehabilitation after the injury
(42). Satellite cells can undergo transformation to myoblast
lineage to initiate muscle regeneration (43). Previous studies
have shown that HBOT promotes a higher number of prolifer-
ating, differentiating, and quiescent satellite cells which will
be reserved for the next injury (40,43). One of the important
conclusions of Oyaizu and colleagues’ study (40) is that
HBOT accelerated regeneration processes, including satellite
cell proliferation (resident stem cells) with improved muscle
fiber regeneration and strength. Chaillou et al. (42) showed
that the myogenic activity of satellite cells can be compro-
mised in the hypoxic environment. Macrophages, neutrophils,
and satellite cells in injured muscles release interleukin-6
(IL-6); IL-6 is involved in the IL-6/STAT3 pathway that in-
creases the expression of the genes needed for the proliferation
of satellite cells and differentiation to myoblast lineages (40).
A study of HBOT in animal models showed earlier activation
of the IL-6/STAT3 pathway compared with their cohorts in
the control group (40). In conclusion, the in vitro studies sug-
gest that HBOT can accelerate the needed proliferation and
differentiation of proliferative phase.

Delayed-Onset Muscle Soreness

Staples et al. (32) demonstrated the effects of HBO on the
faster recovery of DOMS in athletes for the first time, but sev-
eral subsequent studies have shown inconsistent results
(21,34,36,37) (see Table 2). In their systematic review,
Bennett et al. (2) demonstrated higher pain scores at 48 and
72 h in the HBOT group and no differences in longer-term pain,
or swelling or muscle strength at any time. There have been no
further published randomized studies since that review.

Webster et al. (35) showed that HBOT led to decreased pain
and increased torque and recovery in DOMS subjects with a
sample size of 12 patients (six HBOT and six control groups).
Mekjavic et al. (33) has been the only study which has
HYPERBARIC OXYGEN THERAPY IN SPORTS INJURIES
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incorporated completely similar controls with the intervention
group in terms of pressure (2.5 ATA normoxic, PIO2 = 0.2
ATA); the placebo in other studies was pressurized ambient
air with lower pressure than the intervention group. Using
lower fraction oxygen controls to achieve an FiO2 of 0.2 as
in Webster et al. can be controversial due to the increased risk
of decompression illness and other concerns about possible
(untested) therapeutic effects of pressure itself or the increased
pressure of N2 (44). We have discussed the concerns about the
placebo pressure later in Performance bias section.

Muscle Strain and/or Contusion

We could not find any human clinical studies about using
HBOT for athletes with muscle strain and/or contusion.

Cervaens Costa Maia et al. (45) showed that HBOT-
exposed rats had lower creatinine kinase level, a marker of
muscle damage compared with a control group in a rat model
of muscle contusion. They also measured the weight of the in-
jured muscle 72 h after injury and showed that the HBOT
group had higher muscle weight in comparison to the control
group. This finding should be interpreted with caution, how-
ever, because of other studies that have used muscle weight
as a marker of inflammation and have shown lower muscle
weight in HBOT groups (40). Best et al. used a rabbit animal
model of tibialis anterior injury in 1998. They showed a signif-
icant difference in isometric torque deficit of injured muscle
between the HBOT and control groups. Best et al. (46) sug-
gested that five sessions of HBOT 24 h after the muscle-
tendon unit injury can lead to better morphologic healing in
the HBOT group as well as better isometric torque results.
The number of new in vitro and animal studies and the need
for guidance in future studies required us to reevaluate the cur-
rent literature, search for gaps in the current literature, and of-
fer suggestions for future studies (47).

Ligament and Tendon Injuries

Horn et al. (48) have reported that higher destructive force is
needed before reaching failure in the medial collateral ligament
(MCL) of rats treatedwith HBOT comparedwith a control group
after induction of ligament tear and surgery; however, this dif-
ference was only apparent 4 wk after the injury and they could
not find any difference after 6 wk. Ishii et al. (49) showed a
dose–response relationship between the concentration and
pressure of oxygen in HBOT and its effect on the healing pro-
cess of ligament healing in rats. They reported that HBOT at 2
ATA was the most effective at enhancing collagen synthesis
in the extracellular matrix.

The expression of matrix metalloproteinases (MMP) and
type I procollagen are indicators of the beginning of the prolif-
eration phase in the process of ligament healing (30). Takeyama
et al. (30) studied using HBOT in the healing of MCL and an-
terior cruciate ligaments (ACL) in rats after laceration. Both
ACL and MCL in the HBOT group showed significantly
greater gene expression of type I procollagen and no change
in type III procollagen gene expression compared with the
Medicine & Science in Sports & Exercise® 1423
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 on 01/10/2024
control group. Although MCL in the HBOT group showed
macroscopic healing by scar tissue formation, none of the sev-
ered ACL united physically despite the administration of
HBOT. This finding can be attributed to the intraarticular loca-
tion of the ACL (avascularity) in contrast to extraarticular of
the MCL. The MMP gene expression was higher in MCL in
the HBOT group compared with the MCL in the control
group. The expression of tissue inhibitors of metalloprotein-
ases was higher in ACL in the HBOT group compared with
ACL in the control group. Although Takeyama et al. studied
the effectiveness of HBOT on ACL lacerations without any
other intervention, Yeh et al. (50) used HBOT as an adjunct
therapy to ACL tendon graft. They reported increased neovas-
cularization and enhanced incorporation between tendon
grafts and bone in the HBOT group. They also showed that
tendon grafts have higher maximal pullout strength in the
HBOT group. Chan et al. (51) designed a four-arm study to test
HBOT and platelet-derived growth factor-BB’s (PDGF-BB) ef-
fect on cultured cells in rabbit MCL; HBOT and HBOT plus
PDGF-BB groups showed a decrease in type III collagen/type I
collagen content ratio, which can lead to mechanically stronger
collagen fibrils. Hsu et al. (52) used HBOT in rabbits suffering
from patellar tendinopathy, which was induced by collagenase;
tendons in the HBOT group showed 34.8% greater ultimate ten-
sile load compared with the control group. Finally, and perhaps
more concerningly,Mashitori et al. (53) reported a higher amount
of scar tissue and type I procollagen gene expression in the in-
jured MCL of the rats in a HBOT, compared with the control
group. Only two randomized, controlled, human trials using
HBOT in ligament injuries (MCLand ankle sprain) have been re-
ported to date. Both were small, had methodological problems,
and were inconclusive (31,54). Basic and animal studies have
justified moving on and designing human studies to investigate
the clinical effectiveness of using HBOT in ligament and
tendon-injured athletes.
LIMITATIONS OF CURRENT HUMAN STUDIES

Selection bias. We cannot reject the possibility of base-
line differences between groups, especially when the subjects
are recruited after injury and the investigator has no prior data.
Soolsma et al. (54) (HBOT for MCL injury) did not report the
baseline data after the outcome measures in the groups.
Borromeo et al. (31) (HBOT for ankle sprain) did report base-
line measurement and there were significant differences be-
tween the groups regarding initial pain and edema (worse in
HBOT group); however, the time from injury to first HBOT
and the range of motion and ankle function (main outcome)
were uniform. Among DOMS studies, Staples et al. (32) did
not report any statistical test for investigating baseline differ-
ences between groups, they just have shown the baseline date
in the raw data manner in figures; it should be mentioned that
HBOT groups had higher baseline eccentric torque forces than
other groups according to the reported figures in their study.
Mekjavic et al. (33) also did not conduct baseline measure-
ments in HBOT and control groups. Harrison et al. (34)
1424 Official Journal of the American College of Sports Medicine
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reported no difference between HBOT and control groups in
isometric strength but did not report any test for evaluation
of baseline cross-sectional area, T2 relaxation time and serum
creatinine kinase. Webster et al. (35) did not report baseline
values and only reported outcomes as percentage change from
nondisclosed baselines, except for the cross-sectional area,
which they did reported baselines for and emphasized no sig-
nificant differences between groups. It is important to mention
that Webster et al. is the only study that could reproduce the
findings of Staples et al. about HBOT’s effectiveness in
treating DOMS. Babul et al. (36) reported a 95% confidence in-
terval of zero mean difference between control and HBOT
groups and included all baseline measurements. Germain et al.
(37) reported baseline values in figures and tables without men-
tioning any statistical test for checking baseline difference be-
tween groups. We have to emphasize the importance of
reporting baseline characteristics of intervention and control
groups in future studies.We can use less intimidating tests like
isometric muscle strength testing, which can be conducted
even with injured athletes.

Performance bias. The only human trial which used the
same pressure in the chamber for both HBOT and control
groups wasMekjavic et al. (33); Soolsma et al. (51), Borromeo
et al. (31), Staples et al. (32), Webster et al. (35), and Babul
et al. (36) used 1.1, 1.2, or 1.3 ATA of pressure as sham. There
are some concerns that this last type of sham is less effective in
blinding than a controls intervention with the same pressure
with HBOT but with hypoxic mixture to mimic normoxic con-
ditions (PIO2 = 0.2 ATA). However, Weaver et al. (55) ran a
prospective study to test if the divers or other people familiar
with hyperbaric situation can discern chamber pressure (1.5
ATA 100% oxygen vs 1.2 ATA ambient air). They showed that
experienced divers could not discriminate chamber pressures of
1.5 ATA and 1.2 ATA. but they did not reach 2.0 or 2.5 ATA
which are themost common protocols. Clarke (56) reported that
recreational SCUBA divers could not differentiate between 2.0
ATA 100% oxygen and 1.1 to 1.3 ATA ambient air protocols.
However, it did not report in detail how they evaluated the ef-
fect of learning on repeated exposures. A narrative review by
Lansdrop and van Hulst (57) in 2018 concluded that the best
placebo is using air with a lower pressure than the HBOT
group. In the authors’ opinion, however, there are still two the-
oretical concerns with this approach:

1. It is not possible to simultaneously treat subjects of the
study group with subjects of the control group nor is it
possible to have patients under treatment pressure and
study subjects of the control group at the same time
(which means they cannot be treated exactly the same).
With the placebo approach using the same treatment
pressure (2 ATA, for example) breathing a hypoxic mix-
ture (10.5% oxygen and 89.5% nitrogen), patients and
study subjects of both groups (control and study) can
be treated in the chamber at the same time, completely
blinded.
http://www.acsm-msse.org
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2. In the vast majority of multiplace hyperbaric chambers, it
is not possible to obtain an appropriate door seal until the
internal pressure reaches at least 1.2 ATA. Without
enough pressure to obtain the proper seal, a characteristic
noise is produced that would inform the study subjects,
and the personnel inside and outside the chamber, that
there is little pressure inside the chamber.

We should also mention that control groups did not receive any
treatment in Harrison et al. (34) and Germain et al. (37) studies.

Detection bias. Half of the eight human trials have used
blinded assessor for the outcome measurements (Table 2),
three of eight studies did not mention if the assessors of the
outcomes measure were blinded and Webster et al. (35) spec-
ified that their study was single blinded.

FUTURE STRATEGIES TO BRIDGE THE
KNOWLEDGE GAP

We suggest that future studies use larger sample sizes or
matching to avoid differences in the baseline of HBOT and
control groups. They could report baseline data if there is no
difference in the baseline measures of outcome measures.
Blindness strategy is another concern in future study designs,
and the aforementioned concerns about the blindness should
be addressed. The blindness of the investigator, who is respon-
sible for the assessment of outcome measures, can attenuate
substantial bias.

All the current human trials have mentioned randomization
in their design, but considering the limited number of partici-
pants, randomization might not be enough for attenuating allo-
cation bias. We suggest that future studies use large pools of
HYPERBARIC OXYGEN THERAPY IN SPORTS INJURIES

Copyright © 2020 by the American College of Sports Medicine
injured athletes with different injuries but with stratification
and matching. They can use relative outcomes (healing time
of any specific injury in HBOT group/healing time of the same
injury in control group) as an outcomemeasure, which enables
them to use a pool of injured athletes with different injuries.

Despite the number of basic and animal studies using
HBOT in conditions other than muscle soreness, human trial
studies are scarce. Designing new human studies for evalua-
tion of the effectiveness of HBOT on muscle strains, contu-
sion, tendon, and ligament injuries should be the next step in
the light of recent in vitro and animal studies.

CONCLUSIONS

Hyperbaric oxygen therapy has the special capacity to
enhance oxygen delivery, reduce edema and pathologic in-
flammation, mitigate ischemia/reperfusion injury, improve col-
lagen synthesis and deposition, and induce neovascularization
and neoangiogenesis. These underlying mechanisms have the
potential to help the process of healing among injured athletes.
The last meta-analysis and systematic review still stands which
had suggested that HBOT is ineffective for DOMS. The human
studies are scarce despite widespread use of HBOT among ath-
letes and require rigorous scientific studies before concluding if
HBOT can facilitate the return to play of athletes.
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